3.9.2 \(\int \cos ^{\frac {9}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx\) [802]

3.9.2.1 Optimal result
3.9.2.2 Mathematica [A] (verified)
3.9.2.3 Rubi [A] (verified)
3.9.2.4 Maple [B] (verified)
3.9.2.5 Fricas [C] (verification not implemented)
3.9.2.6 Sympy [F(-1)]
3.9.2.7 Maxima [F]
3.9.2.8 Giac [F]
3.9.2.9 Mupad [B] (verification not implemented)

3.9.2.1 Optimal result

Integrand size = 23, antiderivative size = 160 \[ \int \cos ^{\frac {9}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx=\frac {2 \left (7 a^2+9 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {20 a b \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {20 a b \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 \left (7 a^2+9 b^2\right ) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{45 d}+\frac {4 a b \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {2 a^2 \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{9 d} \]

output
2/15*(7*a^2+9*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ellipti 
cE(sin(1/2*d*x+1/2*c),2^(1/2))/d+20/21*a*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/co 
s(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/45*(7*a^2+9*b^2 
)*cos(d*x+c)^(3/2)*sin(d*x+c)/d+4/7*a*b*cos(d*x+c)^(5/2)*sin(d*x+c)/d+2/9* 
a^2*cos(d*x+c)^(7/2)*sin(d*x+c)/d+20/21*a*b*sin(d*x+c)*cos(d*x+c)^(1/2)/d
 
3.9.2.2 Mathematica [A] (verified)

Time = 1.34 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.71 \[ \int \cos ^{\frac {9}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx=\frac {84 \left (7 a^2+9 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+600 a b \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\sqrt {\cos (c+d x)} \left (7 \left (43 a^2+36 b^2\right ) \cos (c+d x)+5 a (156 b+36 b \cos (2 (c+d x))+7 a \cos (3 (c+d x)))\right ) \sin (c+d x)}{630 d} \]

input
Integrate[Cos[c + d*x]^(9/2)*(a + b*Sec[c + d*x])^2,x]
 
output
(84*(7*a^2 + 9*b^2)*EllipticE[(c + d*x)/2, 2] + 600*a*b*EllipticF[(c + d*x 
)/2, 2] + Sqrt[Cos[c + d*x]]*(7*(43*a^2 + 36*b^2)*Cos[c + d*x] + 5*a*(156* 
b + 36*b*Cos[2*(c + d*x)] + 7*a*Cos[3*(c + d*x)]))*Sin[c + d*x])/(630*d)
 
3.9.2.3 Rubi [A] (verified)

Time = 1.28 (sec) , antiderivative size = 219, normalized size of antiderivative = 1.37, number of steps used = 19, number of rules used = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.826, Rules used = {3042, 4752, 3042, 4275, 3042, 4256, 3042, 4256, 3042, 4258, 3042, 3120, 4533, 3042, 4256, 3042, 4258, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {9}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{9/2} \left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^2dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {(a+b \sec (c+d x))^2}{\sec ^{\frac {9}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx\)

\(\Big \downarrow \) 4275

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {a^2+b^2 \sec ^2(c+d x)}{\sec ^{\frac {9}{2}}(c+d x)}dx+2 a b \int \frac {1}{\sec ^{\frac {7}{2}}(c+d x)}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {a^2+b^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx+2 a b \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\right )\)

\(\Big \downarrow \) 4256

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {a^2+b^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx+2 a b \left (\frac {5}{7} \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)}dx+\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {a^2+b^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx+2 a b \left (\frac {5}{7} \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\right )\)

\(\Big \downarrow \) 4256

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {a^2+b^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx+2 a b \left (\frac {5}{7} \left (\frac {1}{3} \int \sqrt {\sec (c+d x)}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {a^2+b^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx+2 a b \left (\frac {5}{7} \left (\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\right )\)

\(\Big \downarrow \) 4258

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {a^2+b^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx+2 a b \left (\frac {5}{7} \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {a^2+b^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx+2 a b \left (\frac {5}{7} \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {a^2+b^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx+2 a b \left (\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {5}{7} \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\right )\right )\)

\(\Big \downarrow \) 4533

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{9} \left (7 a^2+9 b^2\right ) \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+2 a b \left (\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {5}{7} \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\right )\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{9} \left (7 a^2+9 b^2\right ) \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+2 a b \left (\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {5}{7} \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\right )\right )\)

\(\Big \downarrow \) 4256

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{9} \left (7 a^2+9 b^2\right ) \left (\frac {3}{5} \int \frac {1}{\sqrt {\sec (c+d x)}}dx+\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+2 a b \left (\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {5}{7} \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\right )\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{9} \left (7 a^2+9 b^2\right ) \left (\frac {3}{5} \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+2 a b \left (\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {5}{7} \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\right )\right )\)

\(\Big \downarrow \) 4258

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{9} \left (7 a^2+9 b^2\right ) \left (\frac {3}{5} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx+\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+2 a b \left (\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {5}{7} \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\right )\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{9} \left (7 a^2+9 b^2\right ) \left (\frac {3}{5} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+2 a b \left (\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {5}{7} \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\right )\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{9} \left (7 a^2+9 b^2\right ) \left (\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {6 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}\right )+\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+2 a b \left (\frac {2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {5}{7} \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\right )\right )\)

input
Int[Cos[c + d*x]^(9/2)*(a + b*Sec[c + d*x])^2,x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*a^2*Sin[c + d*x])/(9*d*Sec[c + d 
*x]^(7/2)) + ((7*a^2 + 9*b^2)*((6*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2 
, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) 
))/9 + 2*a*b*((2*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (5*((2*Sqrt[Cos[ 
c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*Sin[c + 
 d*x])/(3*d*Sqrt[Sec[c + d*x]])))/7))
 

3.9.2.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4256
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Csc[c + d*x])^(n + 1)/(b*d*n)), x] + Simp[(n + 1)/(b^2*n)   Int[(b*Csc[c 
+ d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && IntegerQ[2* 
n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4275
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^2, x_Symbol] :> Simp[2*a*(b/d)   Int[(d*Csc[e + f*x])^(n + 1), x], x] 
 + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b, d, 
 e, f, n}, x]
 

rule 4533
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + 
Simp[(C*m + A*(m + 1))/(b^2*m)   Int[(b*Csc[e + f*x])^(m + 2), x], x] /; Fr 
eeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
3.9.2.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(397\) vs. \(2(192)=384\).

Time = 30.08 (sec) , antiderivative size = 398, normalized size of antiderivative = 2.49

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-1120 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}+\left (2240 a^{2}+1440 a b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-2072 a^{2}-2160 a b -504 b^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (952 a^{2}+1680 a b +504 b^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-168 a^{2}-480 a b -126 b^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+150 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, a b -147 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, a^{2}-189 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, b^{2}\right )}{315 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(398\)

input
int(cos(d*x+c)^(9/2)*(a+b*sec(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
-2/315*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-1120*a^2* 
cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^10+(2240*a^2+1440*a*b)*sin(1/2*d*x+1 
/2*c)^8*cos(1/2*d*x+1/2*c)+(-2072*a^2-2160*a*b-504*b^2)*sin(1/2*d*x+1/2*c) 
^6*cos(1/2*d*x+1/2*c)+(952*a^2+1680*a*b+504*b^2)*sin(1/2*d*x+1/2*c)^4*cos( 
1/2*d*x+1/2*c)+(-168*a^2-480*a*b-126*b^2)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x 
+1/2*c)+150*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c), 
2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*a*b-147*(2*sin(1/2*d*x+1/2*c)^2-1)^( 
1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*a^ 
2-189*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2 
))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*b^2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+ 
1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.9.2.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.22 \[ \int \cos ^{\frac {9}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx=\frac {-150 i \, \sqrt {2} a b {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 150 i \, \sqrt {2} a b {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 2 \, {\left (35 \, a^{2} \cos \left (d x + c\right )^{3} + 90 \, a b \cos \left (d x + c\right )^{2} + 150 \, a b + 7 \, {\left (7 \, a^{2} + 9 \, b^{2}\right )} \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 21 \, \sqrt {2} {\left (-7 i \, a^{2} - 9 i \, b^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 21 \, \sqrt {2} {\left (7 i \, a^{2} + 9 i \, b^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{315 \, d} \]

input
integrate(cos(d*x+c)^(9/2)*(a+b*sec(d*x+c))^2,x, algorithm="fricas")
 
output
1/315*(-150*I*sqrt(2)*a*b*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin( 
d*x + c)) + 150*I*sqrt(2)*a*b*weierstrassPInverse(-4, 0, cos(d*x + c) - I* 
sin(d*x + c)) + 2*(35*a^2*cos(d*x + c)^3 + 90*a*b*cos(d*x + c)^2 + 150*a*b 
 + 7*(7*a^2 + 9*b^2)*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 21*sq 
rt(2)*(-7*I*a^2 - 9*I*b^2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 
0, cos(d*x + c) + I*sin(d*x + c))) - 21*sqrt(2)*(7*I*a^2 + 9*I*b^2)*weiers 
trassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) 
))/d
 
3.9.2.6 Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {9}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**(9/2)*(a+b*sec(d*x+c))**2,x)
 
output
Timed out
 
3.9.2.7 Maxima [F]

\[ \int \cos ^{\frac {9}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {9}{2}} \,d x } \]

input
integrate(cos(d*x+c)^(9/2)*(a+b*sec(d*x+c))^2,x, algorithm="maxima")
 
output
integrate((b*sec(d*x + c) + a)^2*cos(d*x + c)^(9/2), x)
 
3.9.2.8 Giac [F]

\[ \int \cos ^{\frac {9}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {9}{2}} \,d x } \]

input
integrate(cos(d*x+c)^(9/2)*(a+b*sec(d*x+c))^2,x, algorithm="giac")
 
output
integrate((b*sec(d*x + c) + a)^2*cos(d*x + c)^(9/2), x)
 
3.9.2.9 Mupad [B] (verification not implemented)

Time = 14.66 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.84 \[ \int \cos ^{\frac {9}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx=-\frac {2\,a^2\,{\cos \left (c+d\,x\right )}^{11/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {11}{4};\ \frac {15}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{11\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,b^2\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {4\,a\,b\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

input
int(cos(c + d*x)^(9/2)*(a + b/cos(c + d*x))^2,x)
 
output
- (2*a^2*cos(c + d*x)^(11/2)*sin(c + d*x)*hypergeom([1/2, 11/4], 15/4, cos 
(c + d*x)^2))/(11*d*(sin(c + d*x)^2)^(1/2)) - (2*b^2*cos(c + d*x)^(7/2)*si 
n(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x) 
^2)^(1/2)) - (4*a*b*cos(c + d*x)^(9/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 
13/4, cos(c + d*x)^2))/(9*d*(sin(c + d*x)^2)^(1/2))